Total Items: 0
Sub Total: $0.00
Your favourite brands. Our expert knowledge.
Adventure is here.
The information below is transcribed with full acknowledgement, and with thanks, to Roger Caffin's Australian Bushwalking FAQ at; http://bushwalkingnsw.org.au/clubsites/FAQ/FAQ_GasStoves.htm#Canister
The gas canisters available come in several physical formats, and you have to get the right one for your stove. The different physical formats (below) cannot be swapped between stove types (with one exception), although the different brands of butane/propane mix can usually be swapped around with (almost) no problem. This is despite bleatings by some manufacturers that you must 'only use our canister on our stoves'. It is interesting to note that the Kovea screw-thread canisters actually have a notice on the side saying 'This cartridge is compatible with any good quality and approved threaded appliance'. Kovea make both stoves and canisters for a number of very well-known brands (like MSR), so this seems fairly authoritive. However, there is a small safety problem putting a pure isobutane canister onto a stove not designed for it.
In Australia all stoves and canisters are subject to the Australian Gas Authority (AGA) for licensing.
The hazard is so bad that the French authorities are getting a bit unhappy that this design is still for sale, even in France.
I have since discovered that commercial ones do exist, as shown to the left. Sources for the adapter include the following.
You can also get adapters to convert the old puncture canister to take screw-thread stoves, and to adapt spray-can butane canisters to lie on their side for screw-thread stoves (Sitro Group, Victoria, Australia). I don't trust the puncture canisters, after a few bad experiences, and they usually only contain butane. The pressure pack adapter is rather heavy. Frankly, I reckon it is best to get the right things at the start if you can. Thes
Finally, it is possible to make an adapter to put a screw-thread on a PowerMax canister so you can use those lovely Powermax canisters to drive a different remote-canister gas stove - one with a preheat tube of course. However, such an adapter could create a real fireball with an upright stove, and no-one is silly enough to sell such a thing. (I made one, but no details.) Sadly, these Powermax canisters are no longer available from many places around the world. They have almost disappeared from Europe and the UK, and not many shops in Australia still carry them. But Coleman Australia do still import them from America, and shops can still get them in for you as indicated above.
There is one place where interchangeability can be slightly hazardous, and that is with canisters containing straight isobutane. This gas is in principle a valid alternative to the standard butane/propane mix. I have seen it in two different canister formats: an MSR one of straight isobutane which looks like a spray can, while another was standard screw-thread canister. Both of these canisters had the standard Lindal valve screw thread fitting. The advantage of isobutane is that it boils at -12 C which means it can be very useful in the snow. However, it seems to present some fuel/air mixture problems with some (not all!) stoves.
The one multi-format stove the author knows of is the MSR SuperFly. This has a cunning socket and clip on its base which can mate with both the screw-thread and the French CampingGaz or Easy-Clic connection. There is a technical reason for this: the connections are physically extremely similar in almost all aspects. Put an O-ring seal in the right place and away you go. I would add that when I tested a pre-production SuperFly stove I did have some reservations about the strength of the design, but I gather the production versions were stronger. However, I don't think it stayed on the market for very long.
I had to hunt around to find the technical details for the valve and the screw thread used on these stoves and canisters. The often-quoted European Standard EN 417 Type 200:1996 is effectively the governing standard world-wide for the safety requirements for pressurised canisters, but I don't believe that the standard actually specifies the thread (despite what many catalogues seem to imply).
So EN417 is more concerned with the safety of the container than the details of the valve. However, from other sources I believe it does recognise the existence of our little gas canisters, and makes some special exemptions just for them. Apparently they are too popular to be restricted by the preoccupations of the safety and legal gronks. The European Standard EN 521 issued in 1998 may specify the threaded fitting as it is meant to cover 'Specifications for dedicated liquefied petroleum gas appliances' with an emphasis on portable applications, but I have yet to read the actual Standard. Also, there are several other fittings available for these canisters, and Standards dislike specifying commercial details.
Anyhow, lots of manufacturers state that their canisters comply with EN417, but I suspect they have little idea of what they are talking about. I have asked a couple of well-known companies for a copy of the relevant parts of EN417, and they have replied to the effect that they don't have that information. In that case, how can they make that claim? The answer seems to be that while there are lots of different brands of stoves and canisters out there, not that many of them are actually made by the company whose brand is on them. My understanding is that there are only a few factories in the world making stoves and filling the canisters, and that those factories supply the brand name companies. For instance, we know the MSR canisters come from the Dae Ryuk Can Co Korea because the label says so, and I have also had confirmation that the Kovea canisters are also made by this company. I have also been told that Primus now has their canisters made for them by a third party. If you look at the Snow Peak GST stoves, the Vargo Jet-Ti and the Kovea Camp 3, you will see that the brass valve assembly and base are identical, and the mixing column and the burner are nearly identical. All that differs are the pot supports. Kovea do advertise themselves as makers of stoves for other companies. You may find other brands and models using the same Kovea Camp 3 hardware as well. The Jetboil stoves of some notoriety are theoretically made by Primus, although i suspect primus in turn have sub-contracted the actuall manufacture to Kovea - see their Alpine stove..
The valves in these canisters appear to be all made by the Lindal Group of Germany, probably as part number b188. An unused B188 valve unit from Lindal is shown to the right here, upside down. The blue bit is inside the can. I have opened up (empty) canisters of many brands, and the valve inside has always looked the same. I suspect the Lindal company is the only source for these valves - I have not been able to find alternatives in the West. There is a possible exception with some Chinese canisters. There does not seem to be as much respect for international copyright and patent laws in China. But some Chinese canisters have been found which don't mate properly with the stoves either, and have been shown to leak sometimes. You are warned!
A sample unused valve assembly (from Lindal) is shown above upside down, and the cross-section is shown to the right. It is effectively the same thing you find on a pressure pack can of paint or fly spray - some of which are (or used to be) pressurised by butane or propane! The basic valve shell A is crimped onto the canister body. The outer black butyl rubber ring B (shown brown here) does the sealing there. The stainless steel spring E just visible inside the central blue polyamide cylinder F pushes a small (often red) polyacetal valve plug D against an inner black neoprene rubber valve seat C (shown pink here) under the metal top. This spring-loaded valve is why the canister is called 'resealable'. Part F is the blue bit in the previous photo. The disk D is pushed down by a pin located inside the threaded part of the stove body when the stove is screwed onto the valve, and this lets the gas out. The position of the pin is shown as a solid blue line. In some cases (eg Coleman Powermax) the blue pin is actually a tube and the gas goes up inside it. In most cases there is a hole in the stove body for the gas near the blue pin. Given the millions and millions of spray cans around the world, this valve would seem pretty reliable in sealing (even if the flow does sometimes get blocked up).
Anyhow, what is the thread? The Lindal company specification for valve B188 says the thread is '7/16 NS', but this is misleading. The 'NS' refers to an old (American) National Standard thread type which was replaced by the Unified National Standard, now usually known as UNC (coarse) or UNF (fine). The 7/16 means 7/16"", which matches, sort of, with the diameter I have measured on several canisters of about 0.415"". I say 'sort of' because 7/16"" is 0.437"", which is some 0.022"" (0.56 mm) bigger than the measured 0.415"" on the canisters. But then, a close inspection of the thread on various canisters tells you they are all seriously under-size. This aberration is doubtless due to the thin wall of the metal behind the rolled thread, and does not present a short-term problem in my opinion (or apparently in the opinion of either the manufacturers, who would have some liability concerns, or the Standards Authorities).
However, the inadequate thread-form does present a long-term problem, in that over the years the brass thread on a stove base will wear out. This means the stove will no longer seat properly on the Lindal valve. That in turn means the pin won't depress the valve, so no gas will come out. This isn't a safety hazard per se, but it does mean you should check your old stoves for wear on the thread. One of mine died this way after 6 weeks in France - half-way through a three months trip. I had to quickly buy a new stove.
Measuring a range of stoves and canisters I have found that the pitch is 28 tpi, which is finer than the standard 7/16"" UNF pitch of 24 tpi. However, there is also a (not very common) UN Extra Fine (UNEF) series, and the 7/16"" UNEF thread has 28 tpi. So that's what the thread is: 7/16"" UNEF. I was able to buy a tap locally (Goliath brand) but it wasn't all that cheap. I also bought the taps and dies from e-taps in America, even though they do not list the size. (Marvelous what you can do with an NC grinding machine!) I have made various stove fittings and can confirm that they work just fine on all the canisters I have tested.
If you don't want to actually machine a 7/16"" UNEF thread, you may be able to use an existing one. Robert Woodcock wrote:
While looking for 7/16 UNEF nuts/fittings/taps (I'm trying to connect some brass tube to a canister for a hobby steam turbine project), I found that 7/16 UNEF just so happens to be the same thread used for *another* system originally designed to be difficult to find parts for - wireless ethernet RP-TNC connectors. I just took apart a RP-TNC-to-SMA adapter, and once the guts were removed from it, it threaded onto an MSR IsoPro 8oz (227g) canister perfectly.
If you disassemble a bushwalking or camping stove you will come to the jet. This is usually removable for cleaning. The 'seat' is usually about a 45 degree taper, and the thread is usually done up moderately tight to make it effectively gas-tight. (Be careful: you would look very silly if you stripped the thread!) I have examined a number of stoves of different brands, both gas and liquid fuel, and in general the thread on the jet seems to be M4.5 x 0.5 , which is a Metric Fine thread. That is, it has an OD of 4.5 mm and a pitch of 0.5 mm. I have made jets and tested them in some stoves with one of these dies, and it worked. Once again, I was able to buy the taps and dies at a quite reasonable price from e-taps in America. Note that you need to buy both the Starter and the Bottoming (Finisher) tap, or at least the Finisher tap, to get the right finished size. Curiously, the giant Dormer/Sandvik do not list this size, nor do they list the UNEF sizes. However, some stoves have a bigger diameter thread or a coarser thread, and there does not seem to be any common standard for these.
It's easy enough then to make the thread on the outside of a jet. Making the hole in the middle of the jet is more tricky, as we are talking about a very fine hole. Typically the hole will be between 0.25 mm and 0.35 mm, depending on the stove and the fuel. However the fine drills for the hole are available. The Dormer A100 series are good, and they start at 0.20 mm. The Dormer A720 micro-drill series go even finer but seem to be double the price. Mind you, drills this fine are very expensive and break easily. Don't try to use an ordinary drill chuck for them! A precision Swiss lathe helps, or a Lorche lathe, or some real ingenuity.
But be careful before trying to swap jets between stoves. As mentioned above, not all stoves have exactly the same thread. I found several jets in my collection which look similar but have a coarser thread. I am not sure what stove they come off though! So if the jet does not go in easily, don't force it. And some spare jets which are commercially available have smaller holes than you need: they are meant for gas lanterns rather than stoves. The lanterns need a much smaller gas flow.
Underneath the stove, inside the screw-thread fitting, there is a crucial O-ring. This seals against the top of the threaded spigot or nipple on the canister. If this is missing you risk have gas going everywhere. It can fall out: I have lost one O-ring in the field. Fortunately I always carry spares. You should always check that this O-ring is in place when you take the stove OFF the canister. Later on is too late! If you hear lots of gas escaping (or smell it) while you are putting the stove on a canister, check the O-ring again. A brief hiss is common, but not a sustained hiss.
I always carry several spares. For most stoves th O-ring is a BS011, and if you buy some you should buy them in Viton rubber, not a cheaper version. However, some of the Primus stoves use a BS108 O-ring instead. This is a bit fatter than the BS011, which is not a bad idea. I suspect you could use a BS108 O-ring in place of a BS011 if desperate, but you might need to screw the stove down much harder to get gas flow. This would make the brass thread on the stove wear out quickly. You should be able to buy these O-rings at good hardware, engineering or auto parts shops. If in doubt about the size, take the stove with you.
The Coleman Powermax canisters do have a Lindal valve, but they have a very different O-ring arrangement, as shown here to the left. Note: there may be one or two O-rings on the central pin/tube. Older versions have one O-ring; newer versions have two. The O-ring is a BS-006. They too can fall off, so carry spares.
The actual sizes of these O-rings are as follows, in case you need to measure them to identify them. Since they are an imperial size (BS = British Standard) the primary dimensions are imperial.
O-Ring | ID | OD | Thickness |
---|---|---|---|
BS006 | 1/8"" (3.18 mm) | 1/4"" (6.35 mm) | 0.070"" (1.78 mm) |
BS011 | 5/16"" (7.94 mm) | 7/16"" (11.11 mm) | 0.070"" (1.78 mm) |
BS108 | 1/4"" (6.35 mm) | 7/16"" (11.11 mm) | 0.103"" (2.62 mm) |
How did the resealable canister come about? It was first produced by the English firm Epigas. My suspicion is that the UK firm saw a market opportunity to upgrade from the old French Bleuet puncture-type canisters when some bright spark there a) got tired of the Bleuet canisters and b) realised that the existing Lindal B188 valve was rated for both propane and butane because they are sometimes used as a propellant. Of course, they then had to decide what shape to make the new canister - or should they just use an existing canister? Again, I suspect they decided they needed a lower, more squat shape for stability, similar to that of the Bleuet canister, and someone obliged.
Why did the French subsequently come up with a different connector on their CampingGaz canister - which was otherwise virtually identical to the standard screw-thread one? A silly question: would the French accept anything British? The French CampingGaz Lindal valve is of course very similar on the outside, and identical on the inside, and it may simply be a custom variant. That would explain why no-one else makes canisters for the CampingGaz stoves: they can't get the valve. That, or there isn't the international market demand for the French design. It figures, although I am actually disappointed about this. The CampingGaz fitting is, in my opinion, somewhat better than the Epigas fitting. It does not strip the thread on the inadequate thread form as happens with the Epigas version. But note the irony here: American Coleman now own both the original English Epigas company and the French CampingGaz company.)
Where did the beautiful Coleman PowerMax canister come from? Well, have a look at hair spray cans next time you are in a large supermarket or department store (or beauty shop). Or at the green Atsko Water Guard spray can shown here, next to a Powermax canister. Yep: they look pretty much the same, except for the groove around the Water Guard can - that's designed to hold the plastic lid on. In times past canisters of this shape often used butane or propane as the propellant. By the time Coleman decided to use this format, the safety testing had all been done already. Case solved. Oh, by the way: I think the Powermax canisters are made by Exal Corp of America. They do a lot of those sorts of aluminium containers.
The Coleman PowerMax fitting is similar to the standard resealable connection, but without the thread, and it may be a variant of the model 'RT' valve found on the Lindal web site above. It looks very much like the French fitting. I did measure both the PowerMax and CampingGaz fittings and found the Powermax is slightly different (larger) in size, so you can't interchange canisters there. But this incompatibility may be very sensible for both Coleman and the user, as the Xtreme stoves are specially designed for the liquid feed from the Powermax canisters. You can't get this liquid feed from either the screw-thread or the the French canisters while they are upright. Putting a liquid feed into any 'upright canister' stoves would result in a fireball as the liquid gas came out the burner.
One of the more common criticisms of the whole gas concept is that it can be hard to tell how much fuel you have in a canister. People crap on about 'what to do with half-empty canisters'. This criticism is most often heard from the advocates of petrol and kero (or alcohol, in America). It is true that you can measure exactly how much petrol or kero you have put in the tank, although in practice I suspect most people just fill the tank up. This adds extra weight of course. But it is really true that you can have no idea how much gas you are carrying? Of course not.
The method I normally use is to weigh the canister at home on a small cheap digital scale. I know how much gas there should be in a new canister - typically about 220 - 230 g in the most common size. It is written on the side of the canister as 'Net Wt' or equivalent. The canister might weigh 350 g when new, so the empty canister should then weigh (350 - 220) = 130 g. Now I can work out how much gas is left in a canister after a trip just by reweighing it. I have recorded the weights of many empty canisters over the years: the light Primus ones were about 115 g, many more common ones weigh 130 - 135 g, and a few of the cheaper more tourist variety are up around 150 g. It all depends on the metal used for the tank. But if you start off by recording the new weight each time with a felt-nib pen on the canister itself, you will quickly get to know what's going on. You can see my numbers on the Powermax canister in the picture above.
However, I recently found another method for doing this, in the ""Gear Talk Archive"" for Sep/Oct 2000 on an American web site, from someone who signed himself as 'Barn'. He suggested you should float both an empty canister and a full canister in water and mark the water lines. Transfer the full and empty lines to the canister you take to the field. As the canister empties you can measure the remaining fuel level by floating it in water and noting where the water line is relative to the full line and empty lines.
Obviously you should be using the same canister for all these measurements. They won't let you fine tune your predictions along the lines of so many grams per day, but the method works in the field.
In the fiedl on a long trip I know I will use about 30 g of fuel per day for my wife and myself. Since I usually have the starting weight written on the can, I can easy guesstimate how much fuel is left. Shaking the canister serves as a very rough check on this too.
Let me make it very clear right at the start that I am not advocating that anyone should do this. You can't do this to the puncture canisters, obviously, and the resealable canisters are designed and authorised for 'single use'. However, since other tourist-type LPG gas bottles can be refilled, the purely academic question of whether one could refill one of the resealable canisters does come to mind. Zen Seeker has drawn my attention to a Japanese company which actually does market adapters designed for doing just this. In essence, they are similar to the adapters available for other gas containers. I would add that the web site is in Japanese, and the Babblefish translations Zen suggested are a sight to behold. Machine translation of the Japanese language is not at a high state of evolution right now!
What are the issues with refilling? The following comments came out of a discussion with Zen on refilling and whether one could use a large LPG bottle (mainly propane) for the refills.
I might try 'topping up' a small (100 g or 220 g) canister with standard butane/propane mix from a large (450 g) one. This could be useful to add a bit to a half-full canister so I could be sure it had enough for a trip. I might do this a couple of times before throwing the canister out. Myself, I would not try using straight propane at all: there are too many risks. But I am not going to make any recommendations here apart from 'be damn careful'. What you do is YOUR responsibility!